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SUMMARY

A full-scale, flight-weight, two-dimensional Augmented Deflector Exhaust
Nozzle (ADEN) was mounted on an F404 engine and tested in the NASA Lewis
Propulsion System Laboratory Altitude Test Facility. Testing included 56
hours of engine running time. Of the 56 hours, over 14 were under reheat
power conditions, and 6.5 hours of vector operation were accomplished. No
vibration, cooling, or actuation problems were encountered during the test.
Visual inspection of the ADEN following the test revealed no hardware distress
resulting from the testing. Nozzle reheat temperatures up to 1937 K (3488° R)
were tested along with nozzle pressure ratios up to 18. The inlet pressure
was varied from 24.1 to 124.1 kPa (3.5 to 18 psi). A nominal inlet tempera-
ture of 285 K (520° R) was maintained for all test conditions. The nozzle
maximum pressure loading was 331 kPa (48 psi). Vectoring using the Variable
External Expansion Ramp (VEER) was demonstrated for VEER angles from -15° to
+15° relative to the nominal unvectored VEER position. Nozzle performance was
measured including resultant thrust coefficient, nozzle discharge coefficient,
thrust vector angle, and thrust vector location. Comparisons with 1/8-scale-
model data are presented.
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1.0 BACKGROUND AND INTRODUCTION

This report summarizes the evaluation of a flight-weight, self-cooled,
engine-controlled, two-dimensional (2D), thrust-vectoring exhaust system. The
Augmented Deflector Exhaust Nozzle (ADEN) was successfully tested behind a
General Electric F404 turbofan engine in the NASA Lewis Propulsion Laboratory
Altitude Test Facility. This evaluation provides the first data on any 2D
nozzle over such a wide range of operating conditions.

The ADEN was identified under the Navy Advanced Vertical/Short Takeoff
and Landing (V/STOL) Propulsion-Component Development Program as being the
thrust-vectoring concept with the highest aircraft/engine system payoff for
multimission V/STOL fighter applications (Reference 1). As shown in Figures 1
and 2, the ADEN is a 2D, variable-area, thrust-vectoring, Single Expansion
Ramp Nozzle (SERN). Basic ADEN components consist of: (1) a tramsition
casing from a round cross section at the tailpipe connecting flange to a 2D
(rectangular) cross section at the nozzle throat station; (2) a 2D, variable-
geometry, convergent/divergent (CD) flap assembly; (3) a 2D, variable-posi-
tion, ventral flap; (4) a 2D, external-expansion ramp that can be fixed or
variable depending on specific installation requirements; and (5) a rotating
deflector for thrust vectoring. As illustrated in Figure 3, the ADEN design
varies Ag by means of a moveable flap arrangement on the upper surface. The
expansion ratio is changed by the rotatable ventral flap. In-flight thrust
vectoring of up to 30° deflection is provided by the Variable External Expan-
sion Ramp (VEER). The rotating deflector '"bonnet'" enables continuous thrust
vectoring for V/STOL operation. In the stowed (cruise mode) position, the
deflector is located outside the nozzle casing so that it does not compromise
the required internal flowpath contours. The bonnet was locked up and not
used for this test program. An internal cooling system (Figure 4) utilizes
available engine (fan) flow to maintain nozzle surface temperatures at or
below design levels (Reference 2).

Under the Navy program, the General Electric Aircraft Engine Business
Group in Evendale, Ohio designed, fabricated, assembled, and tested a flight-
type ADEN on a YJ101 engine as a demonstration. The full-scale ADEN demon-
strator was first tested on a YJ10l engine at sea level, static conditions at
the General Electric Peebles Test Operation, Peebles, Ohio (Figure 5). Over
40 hours of nozzle test time were accumulated at various power settings and
nozzle thrust-deflection modes. The major part of the deflected testing was
for VTOL; exhaust gas temperature (Tg) ranged from dry power (about 833 K or
1500° R) to afterburning (A/B, about 1967 K or 3540° R).

Results from the Peebles test were quite favorable. Thrust coefficients
were within the estimated performance band and verified scale-model test
results that showed the ADEN provides high performance in both forward- and
vectored-thrust modes. Maximum augmentation (A/B) temperatures were run with
no significant problems. The objective Tg of 1833 K (3300° R) for VTOL oper-
ation was exceeded by over 111 K (200° R). The actuation system worked as
designed, and loads were less than expected. The cooling system maintained
the average nozzle metal temperatures at or below the design levels.
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ADEN Mounted on the YJ101l Engine.

Figure 1.
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Dry Cruise Max A/B

VTOL In-Flight Vectoring

Figure 3. ADEN Throat Area and Vector Angle Control.

Cooling Plenum
Inlet Valve

Figure 4. ADEN and Augmentor Cooling-Flow (Fan Air) Distribution.
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Following the YJ101/ADEN test at Peebles, the same engine and nozzle were
tested by the Navy at the Lakehurst test facility to evaluate infrared radi-
ation (IR) signature characteristics of the ADEN. This test involved another
40 hours of dry-power testing at sea level, static conditions, bringing the
total engine running time for the ADEN to over 80 hours.

The YJ101/ADEN testing, although highly successful, was limited to ground
level, static testing. As the next step in development of nonaxisymmetric,
thrust-vectoring exhaust systems, the NASA Lewis Research Center, at the
request of the Navy, conducted an altitude test. The objective of the NASA
program was to evaluate aerodynamic performance, cooling-system effectiveness,
and mechanical operation of the ADEN over a range of Mach number and altitude
operating conditions. The test was conducted using the existing ADEN mounted
behind an F404 engine, which is slightly larger than the YJ101 enginme. Test-
ing included nozzle pressure ratios up to 18, design pressure loading on the
exhaust system [exhaust total pressure minus ambient pressure, AP = 331 kPa
(48 psi)], and dry and A/B power for both unvectored and vectored operation.
Vectoring was accomplished using the VEER, with VEER angle settings ranging
from -15° to +15°.

This altitude test and the resulting data are the subject of this report.
Portions of the data were reported in Reference 3.



2.0 APPARATUS

This section describes the test hardware and the NASA Lewis Propulsion
Laboratory Altitude Testing Facility.

2.1 TEST HARDWARE

The test hardware consisted of the ADEN, the F404 engine, and the conical
nozzle. Modifications to the F404 augmentor were necessary to accommodate the
ADEN and the conical nozzle. The measuring system for VEER cooling flow is
also described. Control systems developed for the test program are discussed,
instrumentation is defined, and details of the F404/ADEN installation at the
NASA Lewis test facility are presented.

2.1.1 ADEN

Details of the ADEN flowpath, actuator system, and cooling system are
described in the following subsectiomns.

2.1.1.1 Flowpath

The ADEN, shown in Figure 6, is a two-dimensional, variable-area, exter-
nal-expansion exhaust system. Photographs of the ADEN are shown in Figures 7
and 8. Basic components consist of:

A. Transition Casing - The ADEN transition casing provides a smooth
change in shape from a round cross section at the forward engine
mounting flange to a two-dimensional cross section at the nozzle
throat station. The change in shape was designed to take place in
the shortest possible distance while minimizing the area changes
and limiting all local expansion angles to 15° or less.

B. Flap Assembly - The ADEN throat area is regulated by actuation of a
two-dimensional, variable-geometry, convergent/divergent primary/
secondary flap assembly. This arrangement permits nozzle throat
areas from 1200 cm? (186 in2?) to 2626 cm? (407 in?) to be set. The
flaps are designed to provide efficient thrust recovery for a wide
range of area settings and nozzle pressure ratios. This throat-area
variation is illustrated in Figure 9, which shows the ADEN flowpath.

C. Variable Ventral Flap - A two-dimensional, variable, ventral flap,
located downstream of the nozzle throat, controls the nozzle expan-
sion area ratio as required over the range of operating pressure
ratios.

D. VEER - A two-dimensional, external expansion ramp, which can be
fixed or variable depending on specific installation requirements,



provides the capability of thrust vector control. Rotation of the
expansion ramp will provide an upward or downward vertical thrust
component as desired.

E. Rotating Deflector - In the V/STOL (deflected mode) position, the
rotating deflector diverts the jet downward, providing continuous
thrust vectoring from the forward-mode operation to VIOL, or beyond.
The nozzle flap assembly is rotated to the maximum-open position to
abate the Mach number of the flow approaching the turn. The throat
is established between the tip of the ventral flap and the deflec-
tor. In the stowed (forward mode) position, the deflector is out-
side the casing so that it does not compromise the required internal
flowpath contours. For this program, the rotating deflector always
remained in the stowed position. :

2.1.1.2 Actuator System

Simplicity and reliability have been emphasized throughout the ADEN actu-
ation system design. The motion of the three nozzle flaps is scheduled by
cam~and-link mechanisms operated by a single nozzle-area-control system. The
deflector, used during V/STOL only, requires a second control system.

Nozzle area control in the cruise mode is provided by varying the conver-
gent and divergent (upper) flaps by means of two hydraulic actuators which are
casing mounted.

The ventral flap, positioned by a dual-cam mechanism, has two functions:

L Expansion area control in the cruise mode
] Nozzle throat area control in the V/STOL mode
The ventral flap must be varied during cruise-mode operation to provide

efficient expansion of the nozzle flow. This variation is accomplished by a
single-cam drive mechanism.

In-flight thrust vector control is furnished by a movable external expan-

sion flap. This flap may be integrated with either the aircraft control or
the engine control.

2.1.1.3 Cooling System

The ADEN cooling system provides effective, reliable cooling of exhaust
system parts with the flow available from the fan stream. The coolant is
ducted around the augmentor liner, distributed through structural ribs, and
metered to vary cooling flow as required during cruise and vectored-mode oper-
ation. Figure 4 shows a schematic of this ADEN cooling system.

During vectored operation, the nozzle throat is rotated with the deflec-
tor so that the gas flow is turned upstream of the throat at velocities
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F404/ADEN Installation, Forward Looking Aft.

Figure 19.
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ADEN Mounted in Leakage;
Test Facility

Typical Nozzle Plug

Figure 27.
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Figure 32. Measured Versus Predicted Nozzle Discharge Coefficient as a
Function of Nozzle Pressure Ratio for the Conic Nozzle.

4.3 SUMMARY OF ADEN RESULTS

A summary of the F404/ADEN Altitude Test is presented in Table 2. Test-
ing included 56 hours of engine running time. Of these 56 hours, over 14
hours were under reheat power conditions, and 6.5 hours of vectored operation
were accomplished. No vibration, cooling, or actuation problems were encount-
ered during the test. Visual inspection of the ADEN hardware revealed no
distress as a result of this testing. Posttest photos of the hardware are
shown in Figures 33 through 38.

Table 2. F404/ADEN Altitude Test Summary.

] 56 Hours Total Running Time

- 14.25 Hours Augmented
- 6.5 Hours Vectored

. No Vibration, Cooling, or Actuation Problems
] Tg up to 1937 K (3488° R)

. NPR up to 18

o P, from 24.1 to 124.1 kPa (3.5 to 18.0 psi)
. Nozzle AP up to 331 kPa (48 psi)

. VEER Vectoring from -15° to +15°

. Flight-Weight Hardware

47
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Figure 33.
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Figure 34. Augmentor (Posttest), Forward Looking Aft.
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‘ADEN (Posttest), Oblique View.

Figure 37.
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The test covered a wide range of conditions. Nozzle-throat temperatures
(Tg) up to 1937 K (3488° R) at reheat along with nozzle pressure ratios up to
18 were tested. The inlet pressure varied from 24.1 kPa (3.5 psi) to 124.1
kPa (18 psi). The nozzle maximum pressure loading was 331 kPa (48 psi) at
maximum dry power and 312.2 kPa (46 psi) at reheat conditions.

Vectoring using the VEER was demonstrated for VEER angles from -15° to
+15° relative to the nominal unvectored VEER position. Vectoring had no
measurable effect on engine operation, and no vibration, cooling, or actuation
problems were encountered during the vectoring portion of the test. Vectoring
was accomplished during both dry and reheat conditions.

Fan-shaft stress levels were compared between the conic nozzle and ADEN.
There was no measurable difference in the fan-shaft stresses between the two
nozzles, indicating that the ADEN does not produce additional stresses in the
fan shaft.

Table 3 summarizes all testing to date on the ADEN. The ADEN has been
run for a combined total of 151 hours on the YJ101 and F404 engines. Vector-
ing has been successfully demonstrated using both the VEER and the deflector
bonnet. Throughout this testing no nozzle vibration, cooling, or actuation
problems have been encountered with the ADEN.

Table 3. Summary of All ADEN Testing.

o 151 Hours Total Running Time

- 28 Hours Augmented
- 8 Hours Vectored (3 Dry, 5 A/B)

o No Vibration, Cooling, or Actuation Problems

] VTOL Mode Deflector Angles from 0° to 98° on Max A/B
- Tg Up to 1967 K (3540° R)

] NPR up to 18

L Maximum Structural AP: 331 kPa (48 psi)

] VEER Vectoring from -15° to +15°

o Met Expected Performance

4.4 NOZZLE PERFORMANCE

Nozzle performance is reported for the nonafterburning test points in-
cluding both the unvectored and the vectored VEER positions. Only a limited
amount of nozzle performance data is reported for the afterburning conditions,
however, because nearly all the Ag data were taken at afterburner equivalence
ratios (EQVAB) below 0.6. This equivalence ratio is defined as:

EQVAB = WFAB/WFAB .. . , where WFAB is the afterburner fuel flow and
stoichiometric
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